Some Tractable Instances of Interval Data Minmax Regret Problems: Bounded Distance from Triviality
نویسندگان
چکیده
This paper focuses on tractable instances of interval data minmax regret graph problems. More precisely, we provide polynomial and pseudopolynomial algorithms for sets of particular instances of the interval data minmax regret versions of the shortest path, minimum spanning tree and weighted (bipartite) perfect matching problems. These sets are defined using a parameter that measures the distance from trivial instances. Tractable cases occur when the parameter is bounded by a constant. Two kinds of parameters are investigated, measuring either the distance from special weight structures or the distance from special graph structures.
منابع مشابه
Some tractable instances of interval data minmax regret problems: bounded distance from triviality (short version)
This paper focuses on tractable instances of interval data minmax regret graph problems. More precisely, we provide polynomial and pseudopolynomial algorithms for sets of particular instances of the interval data minmax regret versions of the shortest path, minimum spanning tree and weighted (bipartite) perfect matching problems. These sets are defined using a parameter that measures the distan...
متن کاملSome tractable instances of interval data minmax regret problems
In this paper, we provide polynomial and pseudopolynomial algorithms for classes of particular instances of interval data minmax regret graph problems. These classes are defined using a parameter that measures the distance from well known solvable instances. Tractable cases occur when the parameter is bounded by a constant.
متن کاملRandomized Minmax Regret for Combinatorial Optimization Under Uncertainty
The minmax regret problem for combinatorial optimization under uncertainty can be viewed as a zero-sum game played between an optimizing player and an adversary, where the optimizing player selects a solution and the adversary selects costs with the intention of maximizing the regret of the player. Existing minmax regret models consider only deterministic solutions/strategies, and minmax regret...
متن کاملA Probabilistic Model for Minmax Regret in Combinatorial Optimization
In this paper, we propose a probabilistic model for minimizing the anticipated regret in combinatorial optimization problems with distributional uncertainty in the objective coefficients. The interval uncertainty representation of data is supplemented with information on the marginal distributions. As a decision criterion, we minimize the worst-case conditional value-at-risk of regret. The prop...
متن کاملA 2-approximation algorithm for interval data minmax regret sequencing problems with the total flow time criterion
In this paper we discuss a minmax regret version of the single machine scheduling problem with the total flow time criterion. Uncertain processing times are modeled by closed intervals. We show that if the deterministic problem is polynomially solvable, then its minmax regret version is approximable within 2.
متن کامل